Heterocyclic Compounds with Bridgehead Nitrogen Atoms. Part 11. ${ }^{1}$ Formation of Azocino[2,1,8-cd] pyrrolizines in the Reactions of Indolizines with Dimethyl Acetylenedicarboxylate

Alexander J. Blake,* James W. Dick, (the late) Derek Leaver and (in part) Paul Strachan
Department of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK

Abstract

5-Methyl-1-phenylindolizine and its 1 -acetyl derivative reacted with dimethyl acetylenedicarboxylate to give both 1:1- and 1:2-adducts. UV and ${ }^{1}$ H NMR spectroscopy showed that these types of adducts are dihydro derivatives of pyrrolo[$2,1,5-c d]$ indolizines and of azocino [2,1,8-cd] pyrrolizines, respectively. Contrary to previous claims, the 1:2-adducts similarly obtained from 6- and 7-methyl-2phenylindolizines are also derivatives of the latter ring system; X-ray crystallography (of one such adduct) revealed stereochemical differences relative to the 1:2-adduct from 5-methyl-2phenylindolizine, thus accounting for substantial associated differences in spectroscopic properties. Dehydrogenation products, previously claimed to be [2.3.4]cyclazines, are fully unsaturated azocino[2,1,8-cd] pyrrolizines. X-Ray crystallography showed that this hitherto unrecognised N-bridged [12] annulene ring system is markedly non-planar.

The reactivity of indolizines as 8π-addends in cycloadditions first came to light in the observations of Boekelheide and his coworkers ${ }^{2}$ who made use of such a reaction in the synthesis of [2.2.3]cyclazines. In the presence of a palladium-charcoal catalyst, indolizine 1 reacted with dimethyl acetylenedicarboxylate (DMAD) to give the cyclazine diester 3 together with a smaller amount of its 3,4-dihydro derivative 4 which had presumably been formed from the initial adduct 2 by migration of both hydrogen atoms from the ring-junction positions (Scheme 1). In the absence of palladium-charcoal, compound 4 was the sole product.

E.C EE.C

1

4

Scheme $1 \mathrm{~F}=\mathrm{CO}_{2} \mathrm{Me}$
Some years ago we chose to investigate the effect of placing a methyl group in the 5 -position of the indolizine, thus preventing both the aromatisation of the initial adduct and one of the hydrogen migration processes involved in the isomerisation. We now give an account of this work ${ }^{3}$ together with the results of more recent studies (involving 3,5-unsubstituted indolizines) undertaken in response to a poorly substantiated claim ${ }^{4}$ (concerning the structures of certain adducts) that appeared to be incompatible with our earlier conclusions.

Unexpectedly, the reaction of 5-methyl-2-phenylindolizine 5a with DMAD (1 mol equiv.) in benzene at room temperature gave not only a $1: 1$-adduct ($5 \mathrm{M} 1: 1$) $(54 \%$) but also a $1: 2$-adduct $(5 \mathrm{M} 1: 2)\left(20^{\circ} \%\right)$. Although the former could not be converted
into the latter by further reaction with DMAD, the yields of the two adducts were reversed in relative magnitude (20% and 43% respectively) when the indolizine 5 was treated with 2 mol equiv. DMAD.

The structure 6a assigned to $5 \mathrm{M} 1: 1$ was based on its ${ }^{1} \mathrm{H}$ NMR spectrum (Table 1) which showed, inter alia, the presence of a methyl group joined to non-aromatic carbon ($\delta 1.66$), a singlet ($\delta 6.32$) attributable to the pyrrole proton at C-4, and a four-spin system of the type $\left(\mathrm{CH}=\mathrm{CHCH}_{2}\right)$ which was necessarily derived from the unsubstituted part of the indolizine 6 -membered ring. Deshielding of the methylene protons (av. δ 3.4) indicated the position of the CH_{2} group at $\mathrm{C}-5$, next to the aromatic pyrrole ring, rather than at $\mathrm{C}-7$. Other workers ${ }^{4}$ have since reported indolizine-DMAD adducts of analogous structure.

Given an established structure 6a for the 1:1-adduct, it was

7

8
possible to elucidate the structure 7 of the 1:2-adduct ($5 \mathrm{M} 1: 2$) on the basis of the following comparative evidence. (i) The presence of a 1,2-di(methoxycarbonyl)-3 H -pyrrolizine substructure was apparent from the UV spectrum of $5 \mathrm{M} 1: 2$ in which two of the absorption bands were similar, in form and wavelength, to those of 5M1:1. In addition, however, there was evidence for a second chromophore, absent in $5 \mathrm{M} 1: 1$ and

Table $1{ }^{1} \mathrm{H}$ NMR spectroscopic data ${ }^{a . b}$ of pyrrolo[2,1,5-cd] indolizines and azocino[2,1,8-cd] pyrrolizines

Compd.	δ_{4}	δ_{5}	δ_{6}	δ_{7}	δ_{8}	δ_{9}	$\delta_{7 \mathrm{a}}$ or $\delta_{9 \mathrm{a}}$	$\|J\| / \mathrm{Hz}^{\text {c }}$
6 a	6.32(s)	$3.35(\mathrm{br} \mathrm{~d})$	6.06(ddd)	6.68(dd)			(1.66)s	$J_{5.5} \cdot 20.0, J_{6.7} 9.4, J_{5.6} 5.4$
6b	(2.00) s	$\begin{aligned} & 3.41(\mathrm{ddd}) \\ & 4.21(\mathrm{dd}) \end{aligned}$	6.11 (ddd)	6.66(dd)			(1.65)s	$\begin{aligned} & J_{5.5} \cdot 21.3, J_{6.7} 9.4 \\ & J_{5.6} 5.6, J_{5 \cdot 6} 1.8 \end{aligned}$
				NOE			*	$J_{5^{\prime} 7} 3.3$
7	6.75(s)	4.91 (s)		6.90(d)	6.05(dd)	6.76(d)	(1.72)s	$J_{7.8} 6.2, J_{8.9} 13.4$
17a	$\begin{array}{r} 7.25(\mathrm{~d}) \\ (\mathrm{s}) \end{array}$	4.64(dd)		7.71 (m)	6.37 (m)	(1.73)t	$\begin{array}{r} 5.06(\mathrm{~d}) \\ (\mathrm{s}) \end{array}$	$\begin{aligned} & J_{7.8} 2.2, J_{5.9 \mathrm{a}} \sim 2.0, J_{4.5} \sim 1.2 \\ & J_{7 . \mathrm{CH}_{3}} \bumpeq J_{8 . \mathrm{CH}_{3}} \sim 1.8 \end{aligned}$
17b		4.66(dd) (d)		7.61 (m)	(1.99) dt	$5.54(\mathrm{dm})$	5.03 (ddm) (br d)	$\begin{aligned} & J_{9.9 \mathrm{a}} 6.95, J_{5.9 \mathrm{a}} \sim 2.0 \\ & J_{4.5} \sim 1.1 J_{7.9} \sim 0.9 \\ & J_{7 . \mathrm{CH}_{3}} \sim 0.9 J_{9 . \mathrm{CH}_{3}} \sim 1.6 \end{aligned}$
				(t) (br) (br)		(dq) (dd) (m)	(ddq) (ddd) (br m)	$J_{7.9 \mathrm{a}} \sim 0.8 J_{9 \mathrm{a} . \mathrm{CH}_{3}} \sim 0.8$
10	(1.88)s	(br)		$\begin{aligned} & 2.57 \text { (ddd) } \\ & 3.09 \text { (dd) } \end{aligned}$	5.86(ddd)	6.36(dd)	(1.67)s	$\begin{array}{lll} J_{7.7} & 13.9, J_{8.9} & 11.4 \\ J_{7.8} & 10.1, J_{7 . .8} 5.1 \end{array}$
18a	7.40(s)			7.28(m)	6.35 (m)	$\begin{aligned} & \text { NOE } \\ & (1.96) \mathrm{t} \end{aligned}$	*	$\begin{aligned} & J_{7.9} 2.8 \\ & J_{7.8} 3.6, J_{8 . \mathrm{CH}_{3}} \sim 1.5 \\ & J_{7 . \mathrm{CH}_{3}} \sim 1.9 \end{aligned}$
18b	7.27(s)			7.17(m)	(2.06) dd	6.22(m)		$\begin{aligned} & J_{7.9} \simeq J_{7 . \mathrm{CH}_{3}} \sim 0.9 \\ & J_{9 . \mathrm{CH}_{3}} \sim 1.6 \end{aligned}$

${ }^{a}$ In $\mathrm{CDCl}_{3} ; \delta$ values in parentheses refer to protons in substituent groups. ${ }^{b}$ All compounds showed absorptions due to Ph and OMe protons but these are omitted from the table. 'Coupling constants are based on first order analyses of the spectra and may be subject to small inaccuracies, particularly for spectra rich in long-range coupling. * Asterisks indicate positions of irradiation in decoupling or NOEDS experiments; the effects of the former are indicated as changed multiplicities of the affected signals.

Fig. 1 UV spectra of the adducts $6 \mathbf{a}$ and 7 and of the tetrahydro adduct $\mathbf{1 0}$ in ethanol
absorbing strongly at $\gtrsim 256 \mathrm{~nm}$ (Fig. 1). (ii) Catalytic hydrogenation of 5M1:2 gave a tetrahydro derivative $\mathbf{8}$ in which the additional chromophore was absent, the UV spectrum (Fig. 1) being even more closely similar to that of $5 \mathrm{M} 1: 1$. This was consistent with the removal of a conjugated diene moiety forming part of a 2,4-dienoic ester chromophore (cf. methyl hexa-2,4dienoate, $\lambda_{\text {max }}(\mathrm{nm} 258)$. (iii) The ${ }^{1} \mathrm{H}$ NMR spectrum of $5 \mathrm{M} 1: 2$ showed $\mathrm{C}-\mathrm{CH}_{3}(\delta 1.71)$ and pyrrole proton ($\delta 6.75$) singlets similar to those of $5 \mathrm{M} 1: 1$ but the four-spin system $\left(\mathrm{CH}=\mathrm{CHCH}_{2}\right)$ of the latter was replaced by a three-spin system of the type ($\mathrm{CH}=\mathrm{CHCH}=$) together with a singlet at $\delta 4.91$, attributable to the isolated $\mathrm{CH}-\mathrm{CO}_{2} \mathrm{Me}$ of structure 7. The presence of three vicinal olefinic protons, the most shielded of which was in the central position, provided further evidence for the dienoic ester grouping. It is noteworthy that both of the vicinal coupling constants (6.2 and 13.4 Hz) were substantial in magnitude.

Scheme $2 \mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}$
The formation of the adducts $6 \mathbf{a}$ and 7 can be readily explained on the basis of Scheme 2. The initial $[8+2]$ cyclo addition leads to an entirely non-aromatic 2,7a-dihydro[2.2.3]cyclazine 9 which may isomerise by H-transfer to the more stable 5,7a-dihydro compound 6a containing one aromatic (pyrrole) ring, or may undergo ring expansion, as for 1,2-dihydropyridines of less complex structure, ${ }^{5}$ before the transfer of hydrogen.

1-Acetyl-5-methyl-2-phenylindolizine 5b reacted similarly with DMAD in boiling benzene, yielding a 1:1- and a $1: 2$ adduct. The $1: 1$-adduct $\mathbf{6 b}$ was analogous to $5 \mathrm{M} 1: 1 \mathbf{6 a}$, as shown by its ${ }^{1} \mathrm{H}$ NMR spectrum (Table 1), but the 1:2adduct 10, while based on the same tricyclic skeleton as $5 \mathrm{M} 1: 2$, was a $7,9 \mathrm{a}$ - rather than a 5,9 a-dihydro derivative. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data of 10 (Table 1), including the NOE at $\delta 6.36$ caused by irradiation of the 9 a-methyl group, showed the presence of a four-spin system $\left(\mathrm{CH}=\mathrm{CHCH}_{2}\right)$
different from that of $\mathbf{6 b}$ and having its terminal $\mathbf{C H}$-group (rather than CH_{2}) at C-9.

Shortly after the completion of the foregoing work a report ${ }^{6}$ appeared of the related reaction of 3-methyl-2-phenylindolizine 11 leading to two stereoisomeric 1:2-adducts, 12 and 13, which were conclusively identified by X-ray crystallography of the minor isomer 13. This corroborated our findings with respect to

10

11

12

13

14 a; $R=M e, R^{\prime}=H$
b; $R=H, R^{\prime}=M e$

15 a; $R=M e, R^{\prime}=H$
b; $R=H, R^{\prime}=M e$
the reaction of 5-methyl-2-phenylindolizine and we decided not to pursue our investigations further at that time. More recently, however, Yamashita and his co-workers ${ }^{4}$ claimed that the reactions of DMAD with 6- or 7-methyl-2-phenylindolizine 14a, \mathbf{b} afford, inter alia, 1:2-adducts 15a, \mathbf{b} of a quite different structural type. Unfortunately, these structures were completely unsupported by spectroscopic evidence. Dehydrogenation of the adducts [with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)] was said to yield fully unsaturated [2.3.4]cyclazines $\mathbf{6 a}, \mathbf{b}$ but the properties of these red dehydrogenation products did not match those of known ${ }^{7}$ [2.3.4]cyclazines (green or blue). Accordingly, we undertook to reinvestigate the structures of the $1: 2$-adducts (6 M1:2 and $7 \mathrm{M} 1: 2$) derived from 6- and 7-methyl-2-phenylindolizines $\mathbf{1 4 a}, \mathbf{b}$ by reaction with DMAD.

In the work of Yamashita et al., ${ }^{4}$ these adducts were best prepared (50 and 38%, respectively) by reaction of the indolizines $\mathbf{1 4 a}$ and 14b with an excess of DMAD in acetone at room temperature. However, after failing to isolate more than traces of the adducts under these conditions, we obtained them in acceptable amounts (35 and 11%, respectively) from reactions in anhydrous ether at room temperature for 24 h followed by a period under reflux. The 1:2-adducts crystallised directly from the cooled solutions and the need for tedious chromatographic separation was thus avoided. The adducts obtained in this way differed appreciably in their melting points from those reported by Yamashita et al. but they were convertible, as stated, ${ }^{4}$ into red dehydrogenated products that showed melting points in reasonable agreement with the reported values. It seems, therefore, that the adducts obtained in our work, though perhaps not identical with those of the Japanese workers, could not have differed from them other than stereochemically.

Unfortunately, the spectroscopic features of $6 \mathrm{M} 1: 2$ and 7M1:2 were not structurally definitive since they differed in

Fig. 2 Molecular structures of the 5,9a-dihydroazocino[2,1,8-cd]pyrrolizines 7 (a) and $\mathbf{1 7 a}(b)$ showing crystallographic numbering schemes
several respects from those of $5 \mathrm{M} 1: 27$. The UV spectra were similar to that of 7 in showing absorption characteristic of a 1,2-di(methoxycarbonyl)-3H-pyrrolizine substructure but they lacked the band at $\lambda / \mathrm{nm} 256$ expected for a dienoic ester chromophore. The ${ }^{1} \mathrm{H}$ NMR spectra of $6 \mathrm{M} 1: 2$ and $7 \mathrm{M} 1: 2$ (Table 1) showed five signals due to protons derived from the original indolizine nuclei but these did not correlate well with the corresponding proton signals of 5M1:2: firstly, the chemical shift differences were substantial; secondly, none of the signals in the spectrum of $6 \mathrm{M} 1: 2$ showed splitting greater than 2.2 Hz (though ${ }^{3} J_{7.8}$ was 6.2 Hz in $5 \mathrm{M} 1: 2$); and thirdly, long range couplings, absent in the spectrum of $5 \mathrm{M} 1: 2$, were abundant in those of $6 \mathrm{M} 1: 2$ and $7 \mathrm{M} 1: 2$. This last feature was only partly due to inclusion of the CCH_{3} protons in the spin system.

A better correlation was apparent in the ${ }^{13} \mathrm{C}$ NMR spectra of these three $1: 2$-adducts (Table 2). The signals due to $\mathrm{C}-4,5$ and 9 a of $5 \mathrm{M} 1: 2$ were readily identifiable at $\delta 115.1,42.6$ and 68.3 , respectively, and since close counterparts were present in the spectra of $6 \mathrm{M} 1: 2(\delta 112.7,42.7$ and 62.5$)$ and $7 \mathrm{M} 1: 2$ ($\delta 113.0,42.8$ and 60.5) it seemed probable that all three compounds had gross structures (7,17a and 17b) of the same type.

A proof of this tentative conclusion and an explanation of the spectroscopic differences referred to above were finally provided by X-ray structure analysis of 6 M1:2 and $5 \mathrm{M} 1: 2$. The results (Fig. 2 and Tables 3 and 4) show that both molecules are indeed derivatives of 5,9a-dihydroazocino[2,1,8-cd] pyrrolizine but that they differ stereochemically as well as in the position of the methyl substituent. The 5-methoxy carbonyl group is

Table $2{ }^{13} \mathrm{C}$ NMR spectroscopic data ${ }^{\alpha . b}$ of $5,9 \mathrm{a}$-dihydroazocino[2,1,8-cd] pyrrolizines

Carbon position	Compound 7					Compound 17a							Compound$17 \mathbf{b}^{c} \delta_{\mathrm{c}}{ }^{d}$
			$[\mathrm{M}]^{f}$					[M] ${ }^{\prime}$					
	$i \mathrm{c}^{\text {d }}$	M ${ }^{\text {c }}$	$\begin{aligned} & \delta_{11} 4.8 \\ & 5-H \end{aligned}$	$\begin{aligned} & 6.76 .8 \\ & 4.9-\mathrm{H} \end{aligned}$	$\begin{aligned} & 6.9 \\ & 7-\mathrm{H} \end{aligned}$	$\delta_{c}{ }^{\text {d }}$	M ${ }^{\text {c }}$	$\begin{aligned} & \delta_{11} 1.73 \\ & \mathrm{CH}_{3} \end{aligned}$	$\begin{aligned} & 4.64 \\ & 5-\mathrm{H} \end{aligned}$	$\begin{aligned} & 7.71 \\ & 7-\mathrm{H} \end{aligned}$	$\begin{aligned} & 6.37 \\ & 8-H \end{aligned}$	$\begin{aligned} & 5.05 \\ & 9 \mathrm{a}-\mathrm{H} \end{aligned}$	
1	(133.7)	s				126.0)	d					s	(125.8)
2	(135.5)	s				139.1	d					s	137.9
2a	127.8	d		s		130.3	d						130.2
3	123.9	m		t		123.7	br					+	(123.5)
4	115.1	Dd	D			112.7	D		D*				113.0
4 a	129.9		d	d		125.4	m		+			$+$	(125.2)
5	42.6	Dd			D	42.7	Dd			D			42.8
6	132.0	t^{9}	d^{4}			124.9	m		brd	+	d		(?)
7	132.7	Ddd ${ }^{4}$	Dd ${ }^{9}$	Dd ${ }^{4}$		140.6	brD		D*		Dd		141.8
8	122.1	D				126.9	Dm ${ }^{4}$	Dd ${ }^{4}$					139.8
9	138.3	brD			D*	131.5	m	t			+	+	118.6
9a	68.3	m				62.5	Dm	Dd			Dd		60.5
${ }_{0}$ - Ph	127.4	Dt				127.5	Dt						127.7
$m-\mathrm{Ph}$	128.0	Dd				128.2	Dd						128.2
$p \cdot \mathrm{Ph}$	126.4	Dt				126.5	Dt						126.5
i- Ph	134.0	t				134.5	1						134.7
CO	161.7	m				162.3	m						162.2
CO	164.6	m				164.7	m						164.8
CO	164.8	m				165.2	m						165.3
5-CO	168.7	m	$+$			168.9	m		+				168.8
C. CH_{3}	28.6	Q				18.8	Qm				Qd	Qd	20.3

${ }^{4} \mathrm{InCDCl}_{3} .{ }^{b}$ All compounds showed absorptions due to four OCH_{3} carbons but these are omitted from the table. ${ }^{\text {c }}$ Assignments aided by DEPT spectra and by analogy with 17a; one quaternary resonance not observed (probably $\mathrm{C}-1,3,4 \mathrm{a}$, or 6). ${ }^{\text {d }}$ Parentheses indicate uncertain assignments. ${ }^{\text {e }} \mathrm{M}=$ Multiplicity in fully proton-coupled spectrum; upper case letters refer to one-bond $\mathrm{C}-\mathrm{H}$ coupling and lower case letters to longer range coupling; $\mathrm{br}=$ broad. ${ }^{f}[\mathrm{M}]=$ Changed multiplicity caused by selective, low power proton irradiation at the frequencies (δ_{H}) indicated; + indicates small effect, not easily definable; * indicates narrowing of lines; ${ }^{4}$ resonance partially obscured owing to overlap.

Fig. 3 Molecular structure of the azocino[2,1,8-cd]pyrrolizine 18a showing crystallographic numbering scheme
trans to the 9a-methyl in 5M1:2 and cis- to the 9a-hydrogen in 6M1:2. In parallel with this configurational difference, there is also a conformational difference, mainly confined to the azocine rings of the two isomers and such that the torsion angle $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ is 37.6^{-}in $5 \mathrm{M} 1: 2$ and 60.6 in $6 \mathrm{M} 1: 2$. There can be little doubt that the much larger torsion angle in the latter adduct is responsible for the absence of diene conjugation and for the low value of the vicinal proton coupling constant ${ }^{3} J_{7.8}$. At the same time, the opportunities for four- and five-bond coupling are likely to be increased with increased puckering of the azocine ring. Related examples of this effect are seen in the spectra of cyclooctatetraenes ${ }^{8}$ and nonafulvenes. ${ }^{9}$

In the light of the established structure $17 \mathbf{a}$, both the ${ }^{1} \mathrm{H}$
and ${ }^{13} \mathrm{C}$ NMR spectra of $6 \mathrm{M} 1: 2$ were assigned, with few remaining ambiguities, by means of ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ double resonance experiments (Table 2) with selective low power proton irradiation, such that only the long range CH coupling was affected.
Dehydrogenation of 17 a and 17b with DDQ in boiling benzene yielded the fully unsaturated azocino[2,1,8-cd]pyrrolizines $\mathbf{1 8 a}$ and $\mathbf{1 8 b}$ as deep red, air-stable, crystalline solids. These compounds are N-bridged [12]annulenes ${ }^{7.10}$ which, if their structures were not too far distorted from planarity, might be expected to show evidence of antiaromaticity. However, the NMR spectroscopic absorptions (Table 1) of the three remaining protons joined to the annulene nucleus showed no evidence of ring current effects, being only minimally increased or decreased in frequency relative to their counterparts in the precursor dihydro compounds. The X-ray structure (Fig. 3 and Table 5) of $\mathbf{1 8 a}$ showed that this is due to non-planarity in the azocine ring which has large torsion angles about the formally single carbon-carbon bonds; the angle $C(6)-C$ -(7)-C(8)-C(9), for example, is even larger (62.7°) than the corresponding angle in the dihydro compound 17a. These features, and the bond lengths, are consistent with the mode of bond fixation shown in formula 18. The red colour of these compounds is evidently due to conjugation in the 3-methyl$3 H$-pyrrolizine moiety which shows relatively small deviations from planarity.
Although these [12] annulene derivatives might appear to represent a new cyclazine ring system ([2.2.5]cyclazine) they do not fall within the definition of cyclazines originally proposed by Boekelheide ${ }^{11}$ because of their non-planar structures.

Experimental

Unless otherwise stated in Table 2, ${ }^{13} \mathrm{C}$ NMR data were collected at 50.3 MHz . Alumina for chromatography was

Table 3 Atomic coordinates with esds for 7

	x	y	$=$
N	$0.10525(25)$	$-0.23498(17)$	$0.68990(16)$
$\mathrm{C}(1)$	$0.1883(3)$	$-0.12221(21)$	$0.57532(19)$
$\mathrm{C}(2)$	$0.1964(3)$	$-0.05723(21)$	$0.66759(20)$
$\mathrm{C}(2 \mathrm{a})$	$0.1535(3)$	$-0.12684(21)$	$0.74321(19)$
$\mathrm{C}(3)$	$0.1601(3)$	$-0.12901(22)$	$0.84934(21)$
$\mathrm{C}(4)$	$0.1127(3)$	$-0.24309(22)$	$0.85835(20)$
$\mathrm{C}(4 \mathrm{a})$	$0.0829(3)$	$-0.30762(21)$	$0.75909(20)$
$\mathrm{C}(5)$	$-0.0001(3)$	$-0.42610(20)$	$0.71608(19)$
$\mathrm{C}(6)$	$-0.1931(3)$	$-0.43252(20)$	$0.66721(20)$
$\mathrm{C}(7)$	$-0.2499(3)$	$-0.40611(21)$	$0.57218(20)$
$\mathrm{C}(8)$	$-0.1545(3)$	$-0.37285(22)$	$0.49190(21)$
$\mathrm{C}(9)$	$0.0019(3)$	$-0.30982(21)$	$0.49525(21)$
$\mathrm{C}(9 \mathrm{a})$	$0.1472(3)$	$-0.24557(21)$	$0.58514(19)$
$\mathrm{C}(11)$	$0.2305(3)$	$-0.08645(23)$	$0.47653(22)$
$\mathrm{O}(11)$	$0.26481(25)$	$-0.14720(16)$	$0.40784(15)$
$\mathrm{O}(12)$	$0.23058(25)$	$0.02290(16)$	$0.47804(15)$
$\mathrm{C}(12)$	$0.2744(4)$	$0.06695(25)$	$0.38695(22)$
$\mathrm{C}(21)$	$0.2337(3)$	$0.06869(22)$	$0.68749(20)$
$\mathrm{O}(21)$	$0.12178(24)$	$0.12355(16)$	$0.68338(16)$
$\mathrm{O}(22)$	$0.40380(23)$	$0.10859(15)$	$0.70965(17)$
$\mathrm{C}(22)$	$0.4532(4)$	$0.23006(25)$	$0.7250(3)$
$\mathrm{C}(31)$	$0.20926(17)$	$-0.03519(11)$	$0.93961(10)$
$\mathrm{C}(32)$	$0.30741(17)$	$-0.05140(11)$	$1.03562(10)$
$\mathrm{C}(33)$	$0.35702(17)$	$0.03539(11)$	$1.12144(10)$
$\mathrm{C}(34)$	$0.30849(17)$	$0.13838(11)$	$1.11124(10)$
$\mathrm{C}(35)$	$0.21033(17)$	$0.15458(11)$	$1.01521(10)$
$\mathrm{C}(36)$	$0.16073(17)$	$0.06780(11)$	$0.92940(10)$
$\mathrm{C}(51)$	$0.0369(3)$	$-0.50605(22)$	$0.79336(21)$
$\mathrm{O}(51)$	$0.1467(3)$	$-0.48466(17)$	$0.87385(17)$
$\mathrm{O}(52)$	$-0.06443(24)$	$-0.60613(15)$	$0.75765(14)$
$\mathrm{C}(52)$	$-0.0391(4)$	$-0.69165(24)$	$0.82370(24)$
$\mathrm{C}(61)$	$-0.3279(3)$	$-0.46184(21)$	$0.72762(21)$
$\mathrm{O}(61)$	$-0.48010(25)$	$-0.49924(19)$	$0.68958(17)$
$\mathrm{O}(62)$	$-0.26317(23)$	$-0.44076(16)$	$0.83226(15)$
$\mathrm{C}(62)$	$-0.3848(4)$	$-0.4673(3)$	$0.89920(23)$
$\mathrm{C}(91)$	$0.3139(3)$	$-0.29650(22)$	$0.58870(23)$

16 a; $R=M e, R^{\prime}=H$
b; $R=H, R^{\prime}=M e$

17 a; $R=M e, R^{\prime}=H$ b; $R=H, R^{\prime}=M e$

18 a; $R=M e, R^{\prime}=H$
b; $R=H, \quad R^{\prime}=M e$

Laporte Type H or UG deactivated by treatment with 5% aqueous acetic acid ($0.06 \mathrm{~cm}^{3}$ per g alumina). Silica for TLC was Merck Kieselgel G. Light petroleum refers to the fraction of b.p. $40-60 \mathrm{C}$ and ether refers to diethyl ether.

Reaction of 5-Methyl-2-phenylindolizine 5a with Dimethyl Acetylenedicarboxylate.-A solution of the indolizine $5 \mathrm{a}(0.5 \mathrm{~g}$, 2.4 mmol) and dimethyl acetylenedicarboxylate (DMAD) ($0.35 \mathrm{~g}, 2.5 \mathrm{mmol}$), in benzene ($100 \mathrm{~cm}^{3}$), was kept at room temperature for 24 h , evaporated (to $10 \mathrm{~cm}^{3}$) and chromatographed on alumina. Elution with benzene gave dimethyl $5,7 \mathrm{a}-$ dihydro-7a-methyl-3-phenylpyrrolo [2,1,5-cd] indolizine-1,2-dicarboxylate 6 a ($0.45 \mathrm{~g}, 54 \%$) as pale yellow crystals, m.p.

Table 4 Atomic coordinates with esds for 17a

	x	y	$=$
N	$0.3145(8)$	-0.0056 (3)	0.2729 (7)
C(1)	0.077 5(9)	0.0317 (4)	0.1781 (8)
C(2)	$0.1815(9)$	0.072 3(4)	0.198 2(8)
C(2a)	$0.3318(9)$	0.0487 (4)	$0.2607(8)$
C(3)	$0.4869(9)$	$0.0598(4)$	0.3020 (8)
C(4)	0.5602 (9)	0.009 4(4)	0.3390 (8)
$\mathrm{C}(4 \mathrm{a})$	0.454 8(8)	-0.031 1(4)	0.3207 (8)
C(5)	$0.4664(9)$	-0.089 8(4)	$0.3533(8)$
C(6)	$0.3519(9)$	-0.125 8(4)	0.2461 (8)
C(7)	0.213 8(10)	-0.137 2(4)	0.2393 (9)
C(8)	$0.1460(9)$	-0.109 9(4)	$0.3169(9)$
C(9)	0.1184 (9)	-0.057 9(4)	$0.3135(9)$
C(9a)	0.1557 (8)	-0.022 8(4)	0.2189 (8)
C(11)	$-0.0871(9)$	$0.0412(4)$	0.1087 (8)
O(11)	-0.147 5(7)	0.0828 (3)	0.073 4(7)
$\mathrm{O}(12)$	-0.159 3(7)	-0.0072(3)	0.096 6(6)
C(12)	-0.325 8(9)	-0.004 2(5)	$0.0365(9)$
C(21)	0.1477 (10)	0.1270 (4)	0.1431 (9)
$\mathrm{O}(21)$	0.1481 (8)	0.1403 (3)	0.043 5(7)
$\mathrm{O}(22)$	0.114 (7)	0.1610 (3)	$0.2192(6)$
C(22)	0.074 1(12)	$0.2157(4)$	0.169 8(11)
C(32)	0.5053 (6)	$0.16009(25)$	0.338 4(5)
C(33)	0.5817 (6)	0.209 08(25)	0.349 0(5)
C(34)	0.7171 (6)	$0.21034(25)$	0.3331 (5)
C(35)	0.7761 (6)	$0.16261(25)$	$0.3065(5)$
C(36)	0.6997 (6)	0.113 62(25)	0.2958 (5)
C(31)	0.564 3(6)	$0.11236(25)$	$0.3117(5)$
C(51)	$0.6277(10)$	-0.1118(4)	0.4033 (9)
O(51)	0.738 6(8)	-0.084 9(3)	0.4393 (9)
O(52)	0.628 2(7)	-0.165 5(3)	0.4063 (6)
C(52)	$0.7764(10)$	-0.190 3(4)	0.449 8(10)
C(61)	0.3959 (10)	-0.152 4(4)	$0.1505(9)$
O(61)	0.338 4(9)	-0.191 0(3)	0.0878 (7)
$\mathrm{O}(62)$	$0.5106(8)$	-0.124 7(3)	0.1380 (6)
C(62)	0.5670 (13)	-0.1479(5)	0.048 8(10)
$\mathrm{C}(91)$	$0.0512(10)$	-0.029 6(5)	$0.3955(9)$

$107^{\circ} \mathrm{C}$ (from methanol) (Found: C, $72.1 ; \mathrm{H}, 5.5 ; \mathrm{N}, 4.0 \% ; \mathrm{M}^{+}$, 349. $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{4}$ requires C, $72.1 ; \mathrm{H}, 5.5 ; \mathrm{N}, 4.0 \% ; M, 349$); $\delta_{\mathrm{C}} 25.3\left(\mathrm{CH}_{2}\right), 27.4\left(7 \mathrm{a}-\mathrm{CH}_{3}\right), 51.5,52.2,\left(2 \times \mathrm{OCH}_{3}\right), 64.8$ (C-7a), $108.3(\mathrm{C}-4), 122.4,126.5(2 \times \mathrm{CH}), 127.2,128.3,130.0$ $(3 \times \mathrm{CH}$, phenyl), $132.0,134.55,134.6,137.1,(4 \times$ quat. C), 162.5 and $165.4(2 \times \mathrm{C}=\mathrm{O})$: one of the expected signals is not observed, possibly due to overlap. Further elution with benzene gave tetramethyl 5,9a-dihydro-9a-methyl-3-phenyla=ocino[2,1,8-cd]pyrrolizine- $1,2,5,6$-tetracarboxylate $7(0.24 \mathrm{~g}, 20 \%$) as prisms, m.p. $168-169^{\circ} \mathrm{C}$ (from methanol) (Found: C, 65.9; H, 5.2; N, 2.8%, M^{+}, 491. $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{8}$ requires $\mathrm{C}, 66.0 ; \mathrm{H}, 5.1 ; \mathrm{N}, 2.8 \%$; M, 491).

A similar reaction of the indolizine 5a with DMAD (2 mol equiv) gave the same two adducts $6 \mathbf{a}$ and $7(20 \%$ and 43%, respectively).

Hydrogenation of the Adduct 7.-The adduct (0.2 g), in ethanol ($25 \mathrm{~cm}^{3}$), was hydrogenated at atmospheric pressure in the presence of a palladium-on-charcoal catalyst (0.05 g). When absorption of hydrogen had ceased, the solution was filtered and evaporated. Recrystallisation of the residue from ethanol gave tetramethyl 5,6,7,8,9,9a-hexahydro-9a-methyl-3-phenylazocino $[2,1,8$-cd $]$ pyrrolizine-1,2,5,6-tetracarboxylate $8(0.15 \mathrm{~g}$, 75%), m.p. $183-185^{\circ} \mathrm{C}$ (Found: C, 65.4; H, 5.7; N, 2.7\% ${ }^{\circ} \mathrm{M}^{+}$, 495. $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{8}$ requires $\mathrm{C}, 65.4 ; \mathrm{H}, 5.9 ; \mathrm{N}, 2.8^{\circ}{ }_{0} ; M, 495$); $\delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.7\left(3 \mathrm{H}, \mathrm{s}, 9 \mathrm{a}-\mathrm{CH}_{3}\right), 2-4(c a .7 \mathrm{H}$, complex m, 6-, 7-, 8- and 9-H), $4.8(1 \mathrm{H}, \mathrm{d}, 5-\mathrm{H}), 6.7(1 \mathrm{H}, \mathrm{s}$, $4-\mathrm{H}$) and OCH_{3} and Ph proton signals.

Reaction of 1-Acetyl-5-methyl-2-phenylindolizine 5b with Dimethyl Acetylenedicarboxylate.-A solution of the indolizine ${ }^{12} 5 \mathbf{5 b}(0.193 \mathrm{~g}, 0.78 \mathrm{mmol})$ and DMAD $(0.23 \mathrm{~g}, 1.6 \mathrm{mmol})$ in

Table 5 Atomic coordinates with esds for 18a

	y		$=$
N	$0.2068(3)$	$0.0219(3)$	$0.26150(22)$
$\mathrm{C}(1)$	$0.2990(3)$	$-0.0893(3)$	$0.1288(3)$
$\mathrm{C}(2)$	$0.3856(3)$	$-0.1304(3)$	$0.2009(3)$
$\mathrm{C}(2 \mathrm{a})$	$0.3233(3)$	$-0.0636(3)$	$0.2846(3)$
$\mathrm{C}(3)$	$0.3144(4)$	$-0.0638(3)$	$0.4002(3)$
$\mathrm{C}(4)$	$0.1960(4)$	$0.0159(3)$	$0.4432(3)$
$\mathrm{C}(4 \mathrm{a})$	$0.1325(3)$	$0.0867(3)$	$0.3508(3)$
$\mathrm{C}(5)$	$0.0492(3)$	$0.2073(3)$	$0.3353(3)$
$\mathrm{C}(6)$	$0.0460(3)$	$0.3041(3)$	$0.2153(3)$
$\mathrm{C}(7)$	$0.0109(4)$	$0.2800(4)$	$0.1369(3)$
$\mathrm{C}(8)$	$-0.0324(4)$	$0.1550(4)$	$0.1501(3)$
$\mathrm{C}(9)$	$0.0445(4)$	$0.0316(4)$	$0.1607(3)$
$\mathrm{C}(9 \mathrm{a})$	$0.1831(3)$	$-0.0014(3)$	$0.1729(3)$
$\mathrm{C}(11)$	$0.3342(4)$	$-0.1251(3)$	$0.0206(3)$
$\mathrm{O}(11)$	$0.2624(3)$	$-0.0953(3)$	$-0.03992(22)$
$\mathrm{O}(12)$	$0.4617(3)$	$-0.1978(3)$	$-0.00500(23)$
$\mathrm{C}(12)$	$0.5091(5)$	$-0.2410(5)$	$-0.1083(4)$
$\mathrm{C}(21)$	$0.5054(4)$	$-0.2426(4)$	$0.2000(3)$
$\mathrm{O}(21)$	$0.4916(3)$	$-0.3614(3)$	$0.2412(3)$
$\mathrm{O}(22)$	$0.62574(25)$	$-0.1948(3)$	$0.15282(24)$
$\mathrm{C}(22)$	$0.7464(4)$	$-0.2970(5)$	$0.1542(5)$
$\mathrm{C}(31)$	$0.41863(20)$	$-0.13787(23)$	$0.45953(18)$
$\mathrm{C}(32)$	$0.56029(20)$	$-0.12713(23)$	$0.39657(18)$
$\mathrm{C}(33)$	$0.65673(20)$	$-0.19119(23)$	$0.45516(18)$
$\mathrm{C}(34)$	$0.61151(20)$	$-0.26600(23)$	$0.57670(18)$
$\mathrm{C}(35)$	$0.46986(20)$	$-0.27675(23)$	$0.63965(18)$
$\mathrm{C}(36)$	$0.37342(20)$	$-0.21268(23)$	$0.58107(18)$
$\mathrm{C}(51)$	$-0.0268(4)$	$0.2635(4)$	$0.4367(3)$
$\mathrm{O}(51)$	$-0.0111(3)$	$0.2217(3)$	$0.53210(22)$
$\mathrm{O}(52)$	$-0.1202(3)$	$0.3703(3)$	$0.40777(22)$
$\mathrm{C}(52)$	$-0.2039(5)$	$0.4365(5)$	$0.4980(4)$
$\mathrm{C}(61)$	$0.0908(4)$	$0.4398(3)$	$0.1793(3)$
$\mathrm{O}(61)$	$0.0647(4)$	$0.5412(3)$	$0.1036(3)$
$\mathrm{O}(62)$	$0.1714(3)$	$0.43734(23)$	$0.23798(21)$
$\mathrm{C}(62)$	$0.2268(6)$	$0.5632(4)$	$0.2045(4)$
$\mathrm{C}(91)$	$-0.0143(4)$	$-0.0892(4)$	$0.1704(4)$

benzene ($15 \mathrm{~cm}^{3}$) was heated under reflux for 8 h . The solution was evaporated and the residue was chromatographed on alumina. Elution with dichloromethane-light petroleum ($4: 1$) gave a pale yellow solid (0.075 g) which was recrystallised, first from methanol (crystals tend to retain water), and then from cyclohexane-ethyl acetate to yield dimethyl 4-acetyl-5,7a-dihy-dro-7a-methyl-3-phenylpyrrolo[2,1,5-cd]indolizine-1,2-dicarboxylate 6b, as prisms, m.p. 145-146 ${ }^{\circ} \mathrm{C}$ (Found: C, 70.8; H, 5.4; $\mathrm{N}, 3.5 \% ; \mathrm{M}^{+}, 391.1425 . \mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{5}$ requires $\mathrm{C}, 70.6 ; \mathrm{H}, 5.4 ; \mathrm{N}$, $3.6 \% ; M, 391.1420$). Further elution with dichloromethane gave a crude solid (0.085 g) which, after recrystallisation from methanol, afforded tetramethyl4-acetyl-7,9a-dihydro-9a-methyl-3-phenylazocino[2,1,8-cd]pyrrolizine-1,2,5,6-tetracarboxylate 10 as prisms, m.p. $189-190^{\circ} \mathrm{C}$ (Found: C, $65.3 ; \mathrm{H}, 5.1 ; \mathrm{N}, 2.7 \%$; M^{+}, 533. $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{NO}_{9}$ requires $\mathrm{C}, 65.3 ; \mathrm{H}, 5.1 ; \mathrm{N}, 2.6 \% ; M, 533$); $\delta_{\mathrm{C}} 24.4\left(9 \mathrm{a}-\mathrm{CH}_{3}\right), 28.5\left(\mathrm{CH}_{2}\right), 29.9\left(\mathrm{CH}_{3} \mathrm{CO}\right), 51.9,52.1,52.3$, $52.5\left(4 \times \mathrm{OCH}_{3}\right), 73.2(\mathrm{C}-9 \mathrm{a}), 122.4$ (quat C$), 122.9(\mathrm{CH}, \mathrm{C}-8$ and -9), 127.0 (quat C), $128.0(\mathrm{CH}$, phenyl), 128.6 (quat C), 130.2 , $130.9(2 \times \mathrm{CH}$, phenyl $), 132.2,132.4,132.7,124.6,134.8,140.9$ $(6 \times$ quat C$), 161.4,163.3,165.2,167.6[4 \times \mathrm{C}=\mathrm{O}$ (ester) $]$ and $194.9[\mathrm{C}=\mathrm{O}$ (ketone) $] ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 213,262$, and $355, \log \varepsilon 4.33,4.22$ and 4.31.

Reactions of 6- and 7-Methyl-2-phenylindolizines 14a and 14b with Dimethyl Acetylenedicarboxylate.-(a) The indolizine 14a $(1.84 \mathrm{~g}, 8.9 \mathrm{mmol})$ was stirred with a solution of DMAD $(4.80 \mathrm{~g}$, 34 mmol) in sodium-dried ether $\left(90 \mathrm{~cm}^{3}\right)$ for 24 h at room temperature. A yellow-brown amorphous solid (0.24 g) which had formed was filtered off and shown by TLC to be mainly chromatographically immobile. At this stage, the ethereal filtrate showed 3 principal yellow components, of which the
one of highest R_{F} was dominant. The solution was heated under reflux for 7 h , the yellow component of lower R_{F} became dominant and started to crystallise. After a further 16 h at room temperature, this product was filtered off and a second crop was obtained by concentration of the mother liquor (to ca. $1 / 3$). The crude yellow solid ($1.54 \mathrm{~g}, 35 \%$) was recrystallised from acetone to yield tetramethyl 5,9a-dihydro-9-methyl-3-phenylazocino[2,1,8-cd]pyrrolizine-1,2,5,6-tetracarboxylate 17a as pale yellow needles, m.p. 187-188 ${ }^{\circ} \mathrm{C}$ (lit., ${ }^{4}$ m.p. for putative 15a $197-198^{\circ} \mathrm{C}$) (Found: C, 65.9; H, 5.1; N, $2.9 \% ; \mathrm{M}^{+}, 491.1580$. $\mathrm{C}_{2}{ }_{7} \mathrm{H}_{25} \mathrm{NO}_{8}$ requires $\mathrm{C}, 66.0 ; \mathrm{H}, 5.1 ; \mathrm{N}, 2.85 \%, M, 491.1580$); $\lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 204,250 \mathrm{sh}, 320 \mathrm{sh}$ and 388, $\log \varepsilon 4.53,4.10$, 3.68 and 4.17 .
(b) The indolizine $14 \mathrm{~b}(1.84 \mathrm{~g})$ and DMAD (4.80 g) in sodiumdried ether were treated as in (a) and yielded a crude orange product $(0.5 \mathrm{~g}, 11 \%)$. (A second crop from the mother liquor was of very poor quality and was discarded.) Recrystallisation of the orange product from acetone yielded tetramethyl 5,9a-dihydro-8-methyl-3-phenylazocino $[2,1,8$-cd $]$ pyrrolizine-1,2,5,6tetracarborylate 17 b as pale yellow prisms, m.p. $178-179{ }^{\circ} \mathrm{C}$ (lit., ${ }^{4}$ m.p. for putative 15b $212-214^{\circ} \mathrm{C}$) (Found: C, 66.1; H, 5.2; $\left.\mathrm{N}, 2.8 \% ; \mathrm{M}^{+}, 491.1589\right) ; \lambda_{\text {max }} / \mathrm{nm} 206,150 \mathrm{sh}, 330$ sh and 387 , $\log \varepsilon 4.45,4.15,3.77$, and 4.12.

Dehydrogenation of the Adducts 17a and 17b.-(a) A solution of the adduct $17 \mathrm{a}(0.5 \mathrm{~g})$ and $\operatorname{DDQ}(0.4 \mathrm{~g})$ in benzene $\left(50 \mathrm{~cm}^{3}\right)$ was heated briefly under reflux until it became deep red. After being allowed to cool slowly, the solution was filtered to remove a pale solid (0.21 g), evaporated to a small volume, and chromatographed on alumina. Elution with dichloromethane, evaporation of the eluate, and trituration of the residue with ether yielded tetramethyl 9-methyl-3-phenylazocino[2,1,8-cd]-pyrrolizine-1,2,5,6-tetracarboxylate 18a ($0.46 \mathrm{~g}, 92 \%$) as deep red prisms (from cyclohexane-ethyl acetate), m.p. $191-192{ }^{\circ} \mathrm{C}$ (lit., ${ }^{4}$ m.p. for putative $\mathbf{1 6 a} 186-189{ }^{\circ} \mathrm{C}$) (Found: $\mathrm{M}^{+}, 489.1429$. $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NO}_{8}$ requires $M, 489.1424$); $\delta_{\mathrm{C}} 24.9,51.7,52.0,52.2$, $116.1,117.3,119.5,125.8,127.3,128.3,129.6,131.5,132.2,132.9$, $134.3,138.2,139.0,141.0,143.8,151.2,163.2,164.4,165.1$, and 165.5 (possibly due to overlap, not all the expected resonances are observed); $i_{\max }(\mathrm{EtOH}) / \mathrm{nm} 220,255 \mathrm{sh}, 300$ and 480 , log ع 4.39, 4.26, 4.46 and 3.38 .
(b) In the same way, the adduct $17 \mathrm{~b}(0.256 \mathrm{~g})$ and DDQ $(0.15 \mathrm{~g})$, heated under reflux in benzene $\left(215 \mathrm{~cm}^{3}\right)$ for 30 min yielded tetramethyl 8-methyl-3-phenylazocino[2,1,8-cd]pyrroli-zine-1,2,5,6-tetracarboxylate $\mathbf{1 8 b}(0.174 \mathrm{~g}, 68 \%)$ as purple-red prisms (from methanol), m.p. $166-167^{\circ} \mathrm{C}$ (lit., ${ }^{4}$ m.p. for putative 16b $152-164{ }^{\circ} \mathrm{C}$) (Found: $\mathrm{M}^{+}, 489.1487$); $\delta_{\mathrm{C}} 23.8,51.5,51.9$, $52.0,52.3,115.5,117.8,118.3,121.1,125.8,127.2,128.4,129.8$, 131.2, 131.5, 138.1, 139.7, 142.1, 146.1, 146.8, 153.2, 163.1, 164.8, 164.9 and $165.6 ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 220$ sh, 260, 309 and 498, log $\varepsilon 4.42,4.27,4.51$ and 3.25.

Crystal Structure Determination for 7.-Crystal Data. $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{8}, \quad M=491.46$, triclinic, space group $P \overline{1}$, $a=7.9462(10), \quad b=12.2836(23), \quad c=13.085(3) \quad \AA, \quad \alpha=$ $97.040(17), \quad \beta=101.551(16), \quad \gamma=99.326(13)^{\circ}, \quad V=1219 \AA^{3}$ (from setting angles of 12 reflections with $2 \theta=43-50^{\circ}$, $\bar{\lambda}=1.54184 \AA), Z=2, D_{\text {calc }}=1.339 \mathrm{~g} \mathrm{~cm}^{-3}, T=298 \mathrm{~K}$, colourless crystal, $\mu=0.79 \mathrm{~mm}^{-1}, F(000)=516$.

Data collection and processing. Stoë STADI-4 four-circle diffractometer, graphite-monochromated $\mathrm{Cu}-K_{\alpha}$ X-radiation, $T=298 \mathrm{~K}, \omega-2 \theta$ scans using the learnt-profile method, ${ }^{13}$ 1972 unique reflections ($2 \theta_{\text {max }} 90^{\circ}, h-7 \rightarrow 7, k-11 \rightarrow 11, l$ $0 \rightarrow 11)$ measured, giving 1923 with $F \geqslant 6 \sigma(F)$ for structure solution and refinement. No significant crystal decay or movement was observed.

Structure solution and refinement. Automatic direct methods ${ }^{14}$ located all non-H atoms which were then refined (by
least-squares on F^{15}) with anisotropic thermal parameters. The phenyl ring was refined with ideal $D_{6 h}$ symmetry and H atoms were included at fixed, calculated positions. At final convergence $R, R_{\mathrm{w}}=0.0488,0.0834$ respectively, $S=1.420$ for 314 refined parameters and the final ΔF synthesis showed no $\Delta \rho$ above 0.24 e \AA^{-3}. The weighting scheme $w^{-1}=\sigma^{2}(F)+$ $0.00009 F^{2}$ gave satisfactory agreement analyses, a secondary extinction parameter refined to $4.78(5) \times 10^{-6}$ and in the final cycle $(\Delta / \sigma)_{\max }$ was 0.68 . Tables of bond lengths, bond angles and torsion angles have been deposited at the CCDC.*

Crustal Structure Determination for 17a.-Crystal data. $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{NO}_{8}, M=491.46$, monoclinic, space group $P 2_{1} / n$, $a=9.6752(7), \quad b=24.6574(21), \quad c=11.4156(9) \quad \AA, \quad \beta=$ 114.335(16), $V=2841 \AA^{3}$ [from 20 values of 70 reflections measured at $\left.\pm \omega\left(20=23-40^{\circ}, \lambda=1.54184 \AA\right)\right], Z=4$, $D_{\text {calc }}=1.315 \mathrm{~g} \mathrm{~cm}^{-3}, \quad T=298 \mathrm{~K}$, deep red needle, $0.02 \times 0.08 \times 0.68 \mathrm{~mm}, \mu=0.77 \mathrm{~mm}^{-1}, F(000)=1032$.

Data collection and processing. Stoë STADI-4 four-circle diffractometer, graphite-monochromated $\mathrm{Cu}-\mathrm{K}_{\alpha} \mathrm{X}$-radiation, $T=298 \quad \mathrm{~K}, \omega-2 \theta$ scans with ω scan width ($1.05+$ $0.347 \tan \theta), 4968$ reflections measured $\left(2 \theta_{\max } 120^{\circ}, \mathrm{h}-\right.$ $10 \rightarrow 9, k 0 \rightarrow 27, l 0 \rightarrow 12$) measured, 3518 unique ($R_{\text {int }} 0.11$), giving 1466 with $F \geqslant 4 \sigma(F)$ for structure solution and refinement. Linear isotropic crystal decay (ca. 7%) corrected for during data processing.

Structure solution and refinement. Automatic direct methods ${ }^{14}$ located all non-H atoms which were then refined (by least-squares on F^{15}) with anisotropic thermal parameters. The phenyl ring was refined with ideal $D_{6 \mathrm{~h}}$ symmetry and H atoms were included at fixed, calculated positions. At final convergence $R, \mathrm{R}_{\mathrm{w}}=0.0824,0.0928$ respectively, $S=0.988$ for 317 refined parameters and the final ΔF synthesis showed no $\Delta \rho$ above 0.35 e \AA^{-3}. The weighting scheme $w^{-1}=\sigma^{2}(F)+$ $0.00128 F^{2}$ gave satisfactory agreement analyses, a secondary extinction parameter refined to $2.6(6) \times 10^{-7}$ and in the final cycle $(\Delta / \sigma)_{\text {max }}$ was 0.15 . Tables of bond lengths, bond angles and torsion angles have been deposited at the CCDC.*

Crystal Structure Determination on 18a.-Crystal data. $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{NO}_{8}, ~ M=489.5$, triclinic, space group $P \overline{1}, a=$ 10.596(3) , $b=10.642(3), c=12.906(4) ~ \AA, \quad \alpha=67.288(10)$, $\beta=65.809(13), \gamma=74.605(10)^{\circ}, \quad v=1215 \AA^{3} \quad[$ from 2θ values of 52 reflections measured at $\pm \omega\left(20=27-30^{\circ}\right.$, $\bar{i}=1.54184 \AA)], Z=2, D_{\text {calc }}=1.338 \mathrm{~g} \mathrm{~cm}^{-3}, T=173 \pm$ 0.3 K , deep red lath, $0.41 \times 0.27 \times 0.15 \mathrm{~mm}, \mu=0.79$ $\mathrm{mm}^{-1}, F(000)=512$.

Data collection and processing. Stoë STADI-4 four-circle diffractometer equipped with Oxford Cryosystems low temperature device, ${ }^{18}$ graphite-monochromated $\mathrm{Cu}-K_{\alpha} \mathrm{X}$-radiation, $T=173 \mathrm{~K}, \omega-2 \theta$ scans with ω scan width $(0.66+$ $0.347 \tan \theta)^{\circ}, 3443$ unique data ($2 \theta_{\text {max }} 120^{\circ}, h-10 \rightarrow 11$, $k-10 \rightarrow 11, l 0 \rightarrow 14$), giving 2587 reflections with $F \geqslant$ $6 \sigma(F)$ for use in all calculations. No significant crystal decay or movement was observed.

Structure solution and refinement. Automatic direct methods ${ }^{14}$ located all non-H atoms which were then refined (by least-squares on F^{15}) with anisotropic thermal parameters. The phenyl rings was refined with idealised $D_{6 \mathrm{~h}}$ symmetry and the H atoms were included at fixed, calculated positions. At final
convergence $R, R_{\mathrm{w}}=0.0600,0.0832$ respectively, $S=1.123$ for 317 refined parameters and the final ΔF synthesis showed no $\Delta \rho$ above 0.32 e \AA^{-3}. The weighting scheme $w^{-1}=$ $\sigma^{2}(F)+0.001478 F^{2}$ gave satisfactory agreement analyses, an isotropic extinction parameter refined to $1.3(3) \times 10^{-6}$ and in the final cycle $(\Delta / \sigma)_{\text {max }}$ was 0.012 . Atomic scattering factors were inlaid, ${ }^{15}$ molecular geometry calculations utilised CALC ${ }^{16}$ and illustrations were prepared using ORTEPII. ${ }^{17}$ Tables of bond lengths, bond angles and torsion angles have been deposited at the CCDC.*

Acknowledgements

We thank Drs. I. H. Sadler and D. Reed for their help and advice in the collection and interpretation of high frequency NMR spectroscopic data: we also thank Dr. H. McNab for helpful discussions.

* For details of the CCDC deposition scheme see 'Instructions for Authors', J. Chem. Soc., Perkin Trans. 1, 1991, Issue 1.

References

1 Part 10. D. Farquhar, T. T. Gough, D. Leaver, J. F. Miller, J. W. Dick and M. S. Jessep, J. Chem. Soc., Perkin Trans. 1, 1984, 2553.
2 A. Galbraith, T. Small and V. Boekelheide, J. Org. Chem., 1959, 24, 582; A. Galbraith, T. Small, R. A. Barnes and V. Boekelheide, J. Am. Chem. Soc., 1961, 83, 453.
3 J. W. Dick, PhD Thesis, University of Edinburgh, 1974.
4 Y. Yamashita, D. Suzuki and M. Masumura, Heterocycles, 1984, 22, 705.

5 R. M. Acheson, G. Paglietti and P. A. Tasker, J. Chem. Soc., Perkin Trans. I, 1974, 2496.
6 M. R. N. Murthy, K. Venkatesan and H. Manohar, Cryst. Struct. Commun., 1976, 5, 899; C. M. Gupta, R. K. Rizvi, S. Kumar, N. Anand, M. R. N. Murthy and K. Venkatesan, Indian J. Chem., 1981, 20V, 745.
7 W. Flitsch, A. Gurke and B. Müter, Chem. Ber., 1975, 198, 2967; W. Flitsch and E. Mukidjam, Chem. Ber., 1979, 112, 3577; V. Batroff and W. Flitsch, Annalen, 1987, 621.

8 L. A. Paquette, T.-Z. Wang and C. E. Cottrell, J. Am. Chem. Soc., 1987, 109, 3730.
9 A. Otter, M. Neuenschwander and H. P. Kellerhals, Magn. Reson. Chem., 1986, 24, 353.
10 D. Farquhar, T. T. Gough and D. Leaver, J. Chem. Soc., Perkin Trans. 1, 1976, 341; D. Leaver, Pure Appl. Chem., 1986, 58, 143.
11 V. Boekelheide and R. J. Windgassen, J. Am. Chem. Soc., 1958, 80, 2020; R. J. Windgassen, W. H. Saunders and V. Boekelheide, J. Am. Chem. Soc., 1959, 81, 1459.
12 W. K. Gibson and D. Leaver, J. Chem. Soc. C, 1966, 324.
13 W. Clegg, Acta Cryst., Sect. A, 1981, 37, 22.
14 SHELX86, program for crystal structure solution, G. M. Sheldrick, University of Göttingen, Germany, 1986.
15 SHELX76, program for crystal structure refinement, G. M. Sheldrick, University of Cambridge, England, 1976.
16 CALC, program for molecular geometry calculations, R. O. Gould and P. Taylor, University of Edinburgh, Scotland, 1985.
17 ORTEPII, interactive version, P. D. Mallinson and K. W. Muir, J. Appl. Cryst., 1985, 18, 51.

18 J. Cosier and A. M. Glazer, J. Appl. Cryst., 1986, 19, 105.

Paper 0/03197J
Received 27th June 1991
Accepted 27th June 1991

